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Abstract
Among various recommendation methods, latent
factor models are usually considered to be state-of-
the-art techniques, which aim to learn user and item
embeddings for predicting user-item preferences.
When applying latent factor models to recommen-
dation with implicit feedback, the quality of em-
beddings always suffers from inadequate positive
feedback and noisy negative feedback. Inspired by
the idea of NSVD that represents users based on
their interacted items, this paper proposes a dual-
embedding based deep latent factor model named
DELF for recommendation with implicit feedback.
In addition to learning a single embedding for a
user (resp. item), we represent each user (resp.
item) with an additional embedding from the per-
spective of the interacted items (resp. users). We
employ an attentive neural method to discriminate
the importance of interacted users/items for dual-
embedding learning. We further introduce a neu-
ral network architecture to incorporate dual em-
beddings for recommendation. A novel attempt of
DELF is to model each user-item interaction with
four deep representations that are subtly fused for
preference prediction. We conducted extensive ex-
periments on real-world datasets. The results verify
the effectiveness of user/item dual embeddings and
the superior performance of DELF on item recom-
mendation.

1 Introduction
In the era of information explosion, users are often over-
whelmed by numerous choices available online. Recom-
mender systems play a significant role in filtering overloaded
information and providing personalized services for users.
Modern recommender systems are often based on Collabo-
rative Filtering (CF), the key idea of which is to exploit past
user-item interactions for modeling user preferences against
items [Sarwar et al., 2001]. Among various CF methods, la-
tent factor models [Aggarwal and Parthasarathy, 2001] are
widely used and considered to be the state-of-the-art solutions
∗Corresponding author

to recommendation [Aggarwal, 2016]. Latent factor models
typically characterize users and items with feature vectors in
the same latent space, and estimate each user-item preference
based on the corresponding vectors. For example, Matrix
Factorization (MF) [Paterek, 2007] directly computes the in-
ner product of user and item vectors as the preference score,
while more advanced neural network methods such as Neural
Collaborative Filtering (NCF) [He et al., 2017] leverage non-
linear function to model the interaction between user and item
latent factors, i.e., embeddings.

Early literature on latent factor models for recommenda-
tion [Koren, 2009; Rendle and Schmidt-Thieme, 2008] has
mainly focused on explicit feedback, i.e., the ratings from
users expressing their preferences over items. In those works,
recommendation is formulated as a rating prediction prob-
lem, and the user and item embeddings are updated itera-
tively by minimizing the residual between the predicted and
observed ratings. However, explicit ratings are typically diffi-
cult to acquire in many real applications, which inspires rec-
ommender systems to exploit more abundant implicit feed-
back from user behavior history. For example, a simple act
of a user browsing a product or clicking a link can reflect
the user’s endorsement for the item. An important challenge
of applying latent factor models to implicit feedback based
recommendation is: how to learn appropriate embeddings
for users and items given scarce negative feedback? Since
all the observed interactions are positive implicit feedback,
learning user and item embeddings with only positive feed-
back will result in significant overfitting [Hu et al., 2008;
Devooght et al., 2015]. For instance, simply setting all the
values in user and item embeddings to be 1√

K
(K is the em-

bedding dimension) can predict all user-item preferences to
be positive and achieve 100% accuracy over the observed en-
tries [Aggarwal, 2016].

To tackle this problem, a simple solution is to consider
all the unobserved user-item interactions as negative feed-
back [Hu et al., 2008]. Nevertheless, since not all the un-
observed entries are true negative instances, the solution may
hinder useful information from the limited observed interac-
tions and consequently degrade the quality of the learned user
and item embeddings [Pan et al., 2008]. Recent works [Pan
et al., 2008; Pan and Scholz, 2009; He et al., 2014; 2016;
Volkovs and Yu, 2015] has proposed non-uniform weighting
strategies and sampling schemes to carefully select negative
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feedback from unobserved interactions. However, all these
methods represent each user or item with a single embed-
ding which is learned progressively with the prepared train-
ing instances, and hence the quality of the embeddings still
suffers from inadequate positive feedback or noisy negative
feedback.

We notice that NSVD [Paterek, 2007] is proposed to pa-
rameterize users according to the items that they have rated.
In NSVD, a user embedding is determined by the embeddings
of all the items interacted with the user, which is not affected
by negative feedback and more robust to the number of user
interactions. This inspires us to represent users based on the
characteristics of their interacted items for recommendation
with implicit feedback. To be more specific, in addition to
model primitive user embeddings, we propose obtaining ad-
ditional item-based user embeddings following the idea of
NSVD. Furthermore, NSVD simply averages item embed-
dings to represent users, but different items may contribute
differently to user modeling. For instance, an extremely pop-
ular item should be less effective to reflect a user’s preference
since almost everyone likes it. We thus incorporate the atten-
tion mechanism [Bahdanau et al., 2014] to discriminate the
importance of different interacted items automatically, and
the item-based user embeddings can be computed by aggre-
gating item embeddings with non-uniform weights. Like-
wise, we are able to obtain user-based item embeddings to
characterize items from users’ perspective. The dual embed-
dings associated with each user and item collaboratively pop-
ulate their latent representations in a more accurate way, and
the advantages of the dual-embedding based recommendation
are also verified in our experiments.

To summarize, this paper proposes a Dual-Embedding
based deep Latent Factor Model, named DELF, for recom-
mendation with implicit feedback. We introduce an attentive
neural method to construct an item-based (resp. user-based)
embedding for each user (resp. item), which discriminates
the importance of different users and items automatically.
We then combine these embeddings with the primary ones
to model non-linear user-item interactions using a deep neu-
ral network architecture. A novel attempt of DELF is that we
employ dual embeddings to learn four kinds of deep interac-
tions for each user-item pair, which enables DELF to general-
ize two principled CF methods, i.e., NCF and NSVD. To the
best of our knowledge, this work is the first neural approach
that leverages dual user and item embeddings for recommen-
dation with implicit feedback. We conducted extensive ex-
periments on real-world datasets. The results demonstrate (1)
DELF outperforms the state-of-the-art methods in achieving
better performance for item recommendation, and (2) exploit-
ing dual embeddings is effective for modeling user-item pref-
erences for recommendation in the presence of noisy negative
signals from implicit feedback.

2 Preliminaries
We consider a user-item interaction matrix R ∈ RM×N from
users’ implicit feedback, where M and N are the number of
users and items, respectively. Rui = 1 indicates an interac-
tion between user u and item i, and Rui = 0 means no inter-

action is observed. We denote by R = {(u, i) | Rui = 1}
the set of all the observed interactions. The problem of rec-
ommendation with implicit feedback is to estimate preference
scores R̂ui for the unobserved entries in R.

2.1 Neural Collaborative Filtering
Latent factor models such as Matrix Factorization (MF) typi-
cally represent each user/item with a real-valued vector of la-
tent features. We denote by pu and pi the vectors for user u
and item i in a jointK-dimensional latent space, respectively.
The preference score R̂ui between u and i is computed by the
inner product of pu and qi:

R̂ui =< pu,qi >= pT
uqi (1)

The inner product operation linearly aggregates the multipli-
cations of pairwise latent features, which is insufficient to
capture complex user-item interactions. Neural Collaborative
Filtering (NCF) [He et al., 2017] is thus proposed to learn
non-linear interaction function via a multi-layer perceptron
(MLP) :

R̂ui = φX(...φ2(φ1(z0))...) (2)
z0 = pu ⊕ qi (3)

φl(zl−1) = δl(Wlzl−1 + bl), l ∈ [1, X] (4)

where X is the number of hidden layers in the neural net-
work,⊕ is the concatenation of vectors, Wl, bl and δl are the
weight matrix, bias vector and non-linear activation function
for the l-th layer, respectively. Note that the original NCF pa-
per ensembles MLP and MF to obtain the NeuMF model. In
this paper, we focus on developing single CF model for rec-
ommendation, while the proposed model can be ensembled
with other models to achieve better performance.

2.2 NSVD & SVD++
Instead of parameterizing each user explicitly, NSVD [Pa-
terek, 2007] models users based on the items they have rated.
Formally, each item is associated with two latent vectors qi
and yi. The preference score of user u to item i is estimated
as:

R̂ui = qT
i

∑
j∈R(u) yj√
|R(u)|

+ bu + bi (5)

where R(u) is the set of items rated by user u, bu and bi are
bias terms. NSVD reduces the redundancy of user factors by
representing users with a linear combination of item factors.
However, the main issue of NSVD is that two users who have
rated the same set of items with entirely different ratings are
tied to have the same representation. To address the problem,
SVD++ [Koren, 2008] is proposed for recommendation with
explicit ratings, which estimates user-item preferences as fol-
lows:

R̂ui = qT
i

(
pu +

∑
j∈R(u) yj√
|R(u)|

)
+ bu + bi (6)

where pu is a user latent factor. SVD++ leverages the NSVD-
based representation to adjust the user latent factor rather than
represent the user. We observe that NSVD-based latent fac-
tors are determined by users’ rated items, which are useful to
avoid false negatives from noisy implicit feedback and more
robust than explicitly parameterized factors. In this paper, we
propose to learn dual embeddings for both users and items.
Instead of simply performing a summation over user/item
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Figure 1: Dual-Embedding based Deep Latent Factor Model

dual embeddings, we employ neural networks to model deep
representations for users/items as well as complex user-item
interactions.

3 DELF
In this section, we present our DELF model that combines
the strengths of dual embeddings and deep neural networks
for recommendation.

3.1 Model
DELF is generally based on the conventional framework for
latent factor models, which assumes that R̂ui can be gener-
ated by the underlying user and item latent factors, i.e.,

R̂ui = f(u, i|Θ) (7)

where Θ denotes latent factors of u and i, and f denotes the
interaction function. Figure 1 illustrates the design of Θ and
f in DELF, the details of which are provided as follows.
Input Layer. The input layer of DELF consists of feature
vectors for user u and item i. Single-embedding based la-
tent factor models simply associate u and i with their one-hot
representations u and i. In addition to the one-hot vectors,
DELF also incorporates the binary interaction vectors Ru∗
and R∗i from the observed interactions for u and i, respec-
tively. To this end, we obtain two kinds of feature vectors for
both u and i from the input layer.
Embedding Layer. The embedding layer projects each fea-
ture vector from the input layer into a dense vector represen-
tation. The primitive feature vector embeddings (i.e., u and
i) can be obtained by referring to the embedding matrix as
follows.

pu = PTu (8)

where P ∈ RM×K denotes the user embedding matrix, and
K is the dimension of user embeddings. Similarly, qi can be
obtained from the item embedding matrix Q.

As for the interaction vectors Ru∗ and R∗i, we employ an
attentive method to learn the corresponding embedding rep-
resentations. Recall that NSVD models each user as a linear
combination of the interacted item factors. Formally, items
are associated with another group of latent factors yi, and
the item-based user embedding is calculated by

∑
i∈R(u) yi√
|R(u)|

,

where R(u) denotes the collection of all the positive entries

in Ru∗. NSVD averages the factors of rated items to represent
a user. However, different items can reflect user preference in
different degrees. Therefore, we employ the attention mech-
anism [Bahdanau et al., 2014] to discriminate the importance
of the interacted items automatically, as defined below:

mu =
∑

i∈R(u)

αiyi (9)

where mu is the item-based user embedding, and αi is the at-
tention score for item i rated by user u. Here we parameterize
the attention score for item i by:

hi = tanh(Wayi + ba) (10)

αi =
exp(hT

i ha)∑
i∈R(u) exp(hT

i ha)
(11)

where Wa, ba denote the weight matrix and bias vector re-
spectively, and ha is a context vector. That is, we first feed
the item factor yi to a one-layer MLP that produces hi as a
latent representation for yi. We then measure the importance
of item i based on the similarity between hi and a context
vector ha and derive a normalized importance weight αi via
a softmax function. Likewise, we can represent the item with
user factors as follows:

ni =
∑

u∈R(i)

αuxu (12)

where we aggregate a set of user factors x to parameterize the
user-based item embedding ni, and αu can be computed in a
similar way as in Equation (10) and (11). Note that given ad-
ditional content information, more complex attention mech-
anisms [Chen et al., 2017] can be incorporated into DELF,
which are orthogonal to our approach.
Pairwise Neural Interaction Layers. We feed the dual em-
beddings into the pairwise neural interaction layers to model
feature interactions between u and i. Instead of using a single
network structure, we model interactions for the two kinds of
user/item embeddings separately, and obtain four deep repre-
sentations for different embedding interactions. Formally,

hj = φj
L(...φj

2(φj
1(z0[j]))...) (13)

φj
l = δjl (Wj

l z
j
l−1 + bj

l ), l ∈ [1, L] (14)

z0 = [pu ⊕ ni,pu ⊕ qi,mu ⊕ ni,mu ⊕ qi] (15)

where j ∈ {1, 2, 3, 4}; hj is the deep representation of em-
bedding interaction learned by the j-th feedforward neural
network; φjl is the l-th layer in network j; W j

l , bjl and δjl
denote the weight matrix, bias vector and activation func-
tion of layer l in network j, respectively; z0 includes pair-
wise concatenations of user and item dual embeddings. An
insight of DELF is that the primitive and additional embed-
dings should be of varying importance to the final preference
score under different circumstances. For example, for users
with few interactions, pu can be trivial by learning from very
limited true positive instances. Modeling embedding interac-
tions separately avoids two kinds of embeddings from affect-
ing each other and hence may benefit the prediction result.
In DELF, we choose Rectifier ReLU as the activation func-
tion by default if not otherwise specified, which is proven to
be non-saturated and yields good performance in deep net-
works [Glorot et al., 2011]. As for the network structure, we
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follow the setting proposed by [He et al., 2017] and employ
a tower structure for each network, where higher layers have
smaller number of neurons.
Fusion and Prediction. The fusion layer is above the pair-
wise neural interaction layers, which combines four deep rep-
resentations of embedding interactions into a single one. We
propose two fusion schemes: MLP and an empirical scheme.
For MLP, the combined feature after the fusion layer is for-
mulated as:

hf = δf (Wfzf + bf ) (16)

zf = h1 ⊕ h2 ⊕ h3 ⊕ h4 (17)
where Wf , bf , δf are the weight matrix, bias vector and
activation function, respectively; zf is the concatenation of
four latent interaction representations. We dub this model
“DELF-MLP”. The empirical scheme follows our observa-
tion that primitive embeddings pu and qi should be less ex-
pressive with fewer ratings but yield good performance with
enough true instances. Hence, we empirically assign non-
uniform weights to four deep representations. Formally, for
user u and item i, we have:

α = min(

√
R(u)

λu
, 1), β = min(

√
R(i)

λi
, 1) (18)

hf = α(1−β)h1+αβh2+(1−α)(1−β)h3+(1−α)βh4 (19)

where λu and λi are hyper-parameters to be tuned via the
validation set. The empirical scheme assigns weights to dif-
ferent networks according to the number of interactions from
u and i, and the unified representation hf is computed by the
summation of hj . We dub this model “DELF-EF”.

At last, the output hf of the fusion layer is transformed to
the final prediction score:

R̂ui = δp(Wphf + bf ) (20)

where Wp, bf are the weight matrix and bias term, respec-
tively; δp is the sigmoid function as we expect the prediction
score to be in the range of [0, 1].

It is worthy noticing that both NCF and NSVD can be in-
terpreted as special cases of our DELF framework. By set-
ting zf = h2 in MLP scheme, or α = β = 1 in empirical
scheme, we obtain exactly the same model as NCF. By set-
ting zf = h4 or α = 0, β = 1 empirically, we can recover
NSVD thanks to the universal approximation of neural net-
works to the inner product function [Hornik et al., 1989].

3.2 Learning
Both point-wise and pair-wise objective functions are widely
used in recommender systems. In this work, we employ
point-wise objective function for simplicity and leave the
other one as future work. Due to the one-class nature of im-
plicit feedback, we follow [He et al., 2017] to use the binary
cross-entropy loss, which is defined as:

Llog = −
∑

(u,i)∈R
⋃
R−

Rui log(R̂ui) + (1−Rui) log(1− R̂ui)

(21)
where R

⋃
R− includes all true positive instances and sam-

pled negative instances. To optimize the objective function,
we adopt Adam, a variant of Stochastic Gradient Descent
(SGD) that dynamically tunes the learning rate during train-
ing process and leads to faster convergence [Kingma and

Dataset Interaction# User# Item# Sparsity
Movielens 1,000,209 6,040 3,706 95.53%
Amazon 75,932 1,835 41,488 99.90%

Table 1: Statistics of the Datasets

Ba, 2014]. Due to the non-convexity of the objective func-
tion, gradient-based optimization methods are easily trapped
in local optimal solutions. For the experiments, we pre-train
DELF with MLP to initialize primitive user and item embed-
dings in DELF. This empirically leads to faster convergence
and better performance.

4 Experiments
In this section, we conduct experiments with the aim of
answering the following research questions:

RQ1 How does our approach perform compared with
the state-of-the-art recommendation methods?
RQ2 Are the key components in DELF (i.e., attentive mod-
ule, pairwise neural interaction layers) useful for improving
recommendation results?
RQ3 How dose the performance of DELF vary with differ-
ent values of the hyper-parameters?

4.1 Experimental Settings
• Datasets. We conducted experiments using two public
datasets: Movielens 1M1 and Amazon Music2. We trans-
formed both datasets to implicit feedback, where each entry
is marked as 0 or 1 denoting whether the user has rated the
item. Following previous work [He et al., 2017], we filtered
the datasets to retain users with at least 20 interactions. The
statistics of the two datasets are summarized in Table 1.
• Evaluation Protocol. To evaluate the recommendation per-
formance, we employed the widely used leave-one-out evalu-
ation [Rendle et al., 2009; He et al., 2017; Bayer et al., 2017].
We held-out the latest interaction of each user as the test set,
and collected the second latest interactions as the validation
set. The remaining data were used for training. Since it is
time-consuming to rank all items for each user during evalu-
ation, we followed the common strategy to randomly sample
100 items that are not interacted with the user. Each test item
is ranked among the 100 items to generate a ranked list. We
used Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG) [He et al., 2015] as metrics. The ranked list is
truncated at 10 for both metrics.
• Compared Methods. We compared our methods, DELF-
MLP and DELF-EF, with the following methods:

- ItemPop. This method simply ranks items by the number
of interactions, which is a non-personalized method.

- eALS [He et al., 2016]. This is a MF method that treats
all unobserved interactions as negative instances and assigns
non-uniform weights to them based on item popularity.

- BPR [Rendle et al., 2009]. This method optimizes the
MF model of Equation 1 with a pairwise ranking loss, which
is tailored to learn from implicit feedback.

1https://grouplens.org/datasets/movielens/1m/
2http://jmcauley.ucsd.edu/data/amazon/
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Figure 2: Performance of HR@10 and NDCG@10 w.r.t. the number of predictive factors on the two datasets
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Figure 3: Evaluation of Top-k item recommendation where k ranges from 1 to 10 on the two datasets

- MLP [He et al., 2017]. It uses MLP to learn the non-
linear interaction function of embeddings from data.

- NeuMF [He et al., 2017]. This is a state-of-the-art latent
factor model. It pre-trains MLP and MF separately, and then
ensembles both models to predict the final preference score.

- DMF [Xue et al., 2017]. This is a state-of-the-art MF
model for item recommendation. It directly maps the rating
vectors of users and items into a common low-dimensional
space with non-linear projections.
• Parameter Settings. We implemented our proposed meth-
ods based on Tensorflow. We tuned all the hyper-parameters
on the validation set. We sampled four negative instances per
positive instance. We used the batch size of 256 and the learn-
ing rate of 0.001. The size of the last hidden layer is termed
as predictive factors [He et al., 2017] and we evaluated the
factors in {8, 16, 32, 64}. We employed three hidden lay-
ers for each feedforward network. For example, if the size of
predictive factors is 8, the pairwise interaction layers follow
32→ 16→ 8, and the size of the fused representation is 8.

4.2 Performance Comparison (RQ1)
Figure 2 shows the performance of HR@10 and NDCG@10
with respect to the size of predictive factors. For BPR and
eALS, the number of predictive factors is equal to the dimen-
sion of latent factors.

First, we can see that our DELF methods achieve the best
overall performance on both datasets. For Movielens, DELF-
MLP shows similar performance to NeuMF, and the best re-
sults of HR and NDCG outperform BPR and DMF with a
relative improvement of 3.9% and 5.3%, respectively. Note
that NeuMF is an ensemble method that fuses MF and MLP,
while all the other models including DELF are single CF

models. Achieving similar performance to NeuMF demon-
strates the competitive performance of our approach. For
Amazon, DELF outperforms other methods by a larger mar-
gin (on average, the relative improvement of DELF-EF and
DELF-MLP over DMF is 8.0% and 10.1%, respectively).
This may be caused by the higher sparsity of Amazon dataset
than Movielens. Since our method utilizes dual-embeddings
to represent users/items, they are more robust to the num-
ber of user/item interactions and can better handle the spar-
sity problem. Besides, DELF-MLP generally performs better
than DELF-EF, while DELF-EF is able to get good results on
Amazon. This shows that empirically assigning non-uniform
weights to embedding interactions based on the number of
user/item ratings is effective on the sparse dataset.

Among baseline methods, NeuMF outperforms other mod-
els on Movielens, and DMF performs best on Amazon.
NeuMF explicitly learns user and item embeddings and yields
good performance when more positive instances are pro-
vided. DMF implicitly obtains embeddings by learning a
non-linear projection from rating vectors to latent representa-
tions, and can be less sensitive to the sparsity of datasets. Our
approach integrates the advantage of both methods, which re-
serves primitive embeddings and utilizes interaction vectors
to populate user/item representations, thus achieving good
performance in both datasets. Moreover, DELF outperforms
MLP significantly on both datasets, which further illustrates
the effectiveness of dual embeddings for recommendation.

4.3 Effects of Key Components (RQ2)
We compare two variants of DELF with the proposed DELF-
MLP and DELF-EF. DELF-ni removes the pairwise interac-
tion layers and employs a unified network architecture. For
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Figure 4: Performance of DELF methods w.r.t. the number of negative samples per positive instance (factors=16). We also show the
performance of BPR, which uses pairwise ranking loss (i.e., only one negative instance is paired with a positive instance for learning)

Factors DELF-MLP DELF-EF DELF-ni DELF-na
Movielens

8 0.695 0.640 0.672 0.680
16 0.703 0.694 0.693 0.688
32 0.719 0.701 0.704 0.705
64 0.724 0.706 0.713 0.709

Amazon
8 0.363 0.352 0.356 0.355
16 0.383 0.358 0.362 0.374
32 0.417 0.405 0.390 0.409
64 0.455 0.471 0.423 0.442

Table 2: HR@10 of different variants of DELF

DELF-ni, we set the number of layers and the number of neu-
rons in each layer to be the same as those in DELF-MLP for
a fair comparison. We also evaluate the effects of attention
mechanism with DELF-na, where we simply average item
(resp. user) factors to get item-based user (resp. user-based
item) embeddings, based on the MLP scheme.

The results are provided in Table 2 and 3. We observe
that our proposed methods achieve the best performance on
both datasets with respect to different numbers of factors.
Specifically, the best results of our DELF methods outper-
form DELF-ni with a relative improvement of 4.4%, demon-
strating the advantage of pairwise embedding interactions in-
stead of using a unified network structure. DELF-MLP out-
performs DELF-na with a relative improvement of 2.1%, in-
dicating that employing non-uniform weights on items/users
improves NSVD to obtain a better latent representation.

4.4 Hyper-parameter Investigation (RQ3)
We first report the results on Top-k recommended lists where
k ranges from 1 to 10 in Figure 3. We keep the size of predic-
tive factors to be 64. To make the figure content clearer, we
only include the results of four representative baselines. Re-
sults on Movielens show that DELF-MLP keeps consistent
improvements over other methods for all the values of k (on
average, the relative improvement of DELF-MLP over DMF
is 4.2%). For Amazon, DELF methods outperform baselines
with significant improvements for k larger than 3. Among
baseline models, DMF performs best while BPR slightly per-
forms better than eALS, and all of them outperforms ItemPop
significantly. This demonstrates the necessity of modeling
characteristics of users and items, instead of just recommend-

Factors DELF-MLP DELF-EF DELF-ni DELF-na
Movielens

8 0.407 0.373 0.389 0.398
16 0.417 0.407 0.409 0.407
32 0.428 0.417 0.416 0.419
64 0.435 0.424 0.426 0.426

Amazon
8 0.257 0.235 0.252 0.250
16 0.259 0.250 0.247 0.249
32 0.268 0.269 0.259 0.258
64 0.285 0.296 0.264 0.277

Table 3: NDCG@10 of different variants of DELF

ing popular items.
We illustrate the impact of negative sampling ratio for

DELF methods in Figure 4. It can be clearly seen that em-
ploying more than one negative instance is beneficial to rec-
ommendation performance. For Movielens, a sampling ratio
larger than 4 helps DELF methods to get the better results.
For Amazon, the optimal negative sampling ratio is between
3 and 8. The results are consistent with previous works [Xue
et al., 2017; He et al., 2017].

5 Conclusion and Future Work
In this paper, we propose a novel deep latent factor model
with dual embeddings for recommendation. In addition to
the primary user and item embeddings, we employ an at-
tentive neural method to obtain additional embeddings for
users and items based on their interaction vectors from im-
plicit feedback. We introduce a neural network architecture
to learn deep representations for pairwise interactions among
dual user/item embeddings and subtly fuse the latent interac-
tions to predict the preference score. Extensive experiments
on two real-world datasets demonstrate the superior perfor-
mance of our proposed model compared with the state-of-
the-art methods.

In the future, we plan to extend DELF to incorporate aux-
iliary information. Auxiliary information such as social re-
lations, user review and knowledge base can be utilized to
characterize users/items from different perspectives. Besides,
negative instances can be assigned with non-uniform weights
for optimization. Thus we plan to study the effects of differ-
ent weighting schemes on our method.
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